[Udemy, Madan Reddy, Eazy Bytes] From Java Dev to AI Engineer: Spring AI Fast Track [8/2025, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 7 месяцев

Сообщений: 2002

LearnJavaScript Beggom · 18-Сен-25 13:25 (1 месяц 9 дней назад)

From Java Dev to AI Engineer: Spring AI Fast Track
Год выпуска: 8/2025
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/java-spring-ai/
Автор: Madan Reddy, Eazy Bytes
Продолжительность: 13h 23m 2s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
Build AI Apps with Spring AI, OpenAI, RAG, MCP, AI Testing, Observability, Speech & Image Generation
What you'll learn
  1. Build Spring Boot applications powered by Spring AI
  2. Integrate Spring AI app with OpenAI, Ollama, Docker Model Runner, and AWS Bedrock
  3. Use prompt templates and prompt stuffing techniques
  4. Convert AI text responses to Java Beans, Lists, and Maps
  5. Understand how LLMs work internally with tokens and embeddings
  6. Implement Retrieval-Augmented Generation (RAG) with Spring AI
  7. Implement memory in chat apps using Spring AI advisors
  8. Teach LLMs to call tools exposed by Java methods
Requirements
  1. Knowledge on Java, Spring Boot is mandatory
Description
Are you ready to build AI-powered Java applications with real-world use cases? This hands-on course will teach you how to integrate cutting-edge AI capabilities into your Spring Boot applications using the Spring AI framework and OpenAI.
You’ll master everything from building your first chat-based app to using Retrieval-Augmented Generation (RAG), Tool Calling, Structured Output Conversion, MCP (Model Context Protocol), and even Speech-to-Text, Text-to-Speech, and Image Generation — all using Java and Spring Boot.
From understanding how LLMs work to deploying production-ready AI features with observability, testing, and advisor-based safety, this course is packed with powerful demos, clean explanations, and practical techniques to bring intelligence to your backend.
Whether you're a Java developer, Spring enthusiast, or backend engineer exploring Generative AI, this course will guide you step-by-step with best practices and battle-tested code.
What You’ll Learn:
Section 1: Welcome & Hello World with Spring AI
  1. Understand the Spring AI framework and course roadmap
  2. Build your first Spring Boot AI app using OpenAI
  3. Deep dive into ChatModel and ChatClient APIs
Section 2: Prompt Engineering & Structured Output
  1. Use message roles, prompt templates, and stuffing techniques
  2. Work with advisors to control AI behavior
  3. Map AI responses to Java Beans, Lists, and Maps
Section 3: Generative AI & LLM Fundamentals
  1. Learn about tokens, embeddings, and how LLMs generate text
  2. Understand attention, vocabulary, and model internals
  3. Explore static vs positional embeddings and context windows
Section 4: AI Memory with ChatHistory
  1. Implement stateless-to-stateful conversations
  2. Use MemoryAdvisors and Conversation IDs for per-user memory
  3. Persist chat memory using JDBC and configure maxMessages
Section 5: RAG – Retrieval-Augmented Generation
  1. Set up a vector store (Qdrant) using Docker
  2. Store and query document embeddings in Spring Boot
  3. Use RetrievalAugmentationAdvisor to feed documents to AI
Section 6: Tool Calling – Let AI Take Action
  1. Enable tool invocation via LLMs
  2. Build tools for real-time actions like querying time or database
  3. Customize tool errors and return responses to users
Section 7: Model Context Protocol (MCP)
  1. Learn MCP architecture and communication patterns
  2. Build MCP Clients and Servers using Spring AI
  3. Integrate with GitHub’s MCP Server and explore STDIO transport
Section 8: Testing & Validating AI Outputs
  1. Use RelevancyEvaluator and FactCheckingEvaluator
  2. Test AI responses for correctness in dev and production
  3. Add runtime safety checks with Spring Retry
Section 9: Observability – Monitoring AI Operations
  1. Enable Spring Boot Actuator metrics for AI
  2. Set up Prometheus & Grafana dashboards
  3. Trace AI behavior with OpenTelemetry and Jaeger
Section 10: Speech & Image Generation
  1. Convert voice to text with AI-powered transcription
  2. Generate natural speech from text prompts
  3. Turn prompts into images using the ImageModel
Who this course is for:
  1. Java and Spring Boot developers eager to integrate AI into real-world applications
  2. Backend developers curious about LLMs, prompt engineering, and AI-powered workflows
  3. Full Stack developers interested in adding AI capabilities to their microservices or APIs
  4. Architects exploring Retrieval-Augmented Generation (RAG) and Tool Calling in Spring ecosystems
  5. Professionals aiming to bring natural language interfaces to enterprise applications
  6. Devs building chatbots, voice assistants, or image generation tools using Spring AI
  7. Students and enthusiasts who want a practical, hands-on approach to Generative AI with Java
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 1075 кб/с
Аудио: aac lc, 48.0 кгц, 128 кб/с, 2 аудио
Изменения/Changes
The 2025/8 version has increased the number of lessons by 51 and the duration increased by 7 hours 4 minutes compared to 2025/7.
MediaInfo
General
Complete name : D:\2_1\Udemy - From Java Dev to AI Engineer Spring AI Fast Track (8.2025)\2 - Spring AI Essentials - Prompts, Advisors, and Structured Responses\10 -Understanding ChatOptions in Spring AI.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 89.1 MiB
Duration : 10 min 16 s
Overall bit rate : 1 212 kb/s
Frame rate : 30.000 FPS
Writing application : Lavf59.27.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 10 min 16 s
Bit rate : 1 075 kb/s
Nominal bit rate : 3 000 kb/s
Maximum bit rate : 3 000 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.039
Stream size : 79.1 MiB (89%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=3000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=3000 / vbv_bufsize=6000 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Color range : Limited
Color primaries : BT.709
Transfer characteristics : BT.709
Matrix coefficients : BT.709
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC
Format/Info : Advanced Audio Codec Low Complexity
Codec ID : mp4a-40-2
Duration : 10 min 16 s
Source duration : 10 min 16 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 48.0 kHz
Frame rate : 46.875 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 9.41 MiB (11%)
Source stream size : 9.41 MiB (11%)
Default : Yes
Alternate group : 1
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error