From Java Dev to AI Engineer: Spring AI Fast Track
Год выпуска: 8/2025
Производитель: Udemy
Сайт производителя:
https://www.udemy.com/course/java-spring-ai/
Автор: Madan Reddy, Eazy Bytes
Продолжительность: 13h 23m 2s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
Build AI Apps with Spring AI, OpenAI, RAG, MCP, AI Testing, Observability, Speech & Image Generation
What you'll learn
- Build Spring Boot applications powered by Spring AI
- Integrate Spring AI app with OpenAI, Ollama, Docker Model Runner, and AWS Bedrock
- Use prompt templates and prompt stuffing techniques
- Convert AI text responses to Java Beans, Lists, and Maps
- Understand how LLMs work internally with tokens and embeddings
- Implement Retrieval-Augmented Generation (RAG) with Spring AI
- Implement memory in chat apps using Spring AI advisors
- Teach LLMs to call tools exposed by Java methods
Requirements
- Knowledge on Java, Spring Boot is mandatory
Description
Are you ready to build AI-powered Java applications with real-world use cases? This hands-on course will teach you how to integrate cutting-edge AI capabilities into your Spring Boot applications using the Spring AI framework and OpenAI.
You’ll master everything from building your first chat-based app to using Retrieval-Augmented Generation (RAG), Tool Calling, Structured Output Conversion, MCP (Model Context Protocol), and even Speech-to-Text, Text-to-Speech, and Image Generation — all using Java and Spring Boot.
From understanding how LLMs work to deploying production-ready AI features with observability, testing, and advisor-based safety, this course is packed with powerful demos, clean explanations, and practical techniques to bring intelligence to your backend.
Whether you're a Java developer, Spring enthusiast, or backend engineer exploring Generative AI, this course will guide you step-by-step with best practices and battle-tested code.
What You’ll Learn:
Section 1: Welcome & Hello World with Spring AI
- Understand the Spring AI framework and course roadmap
- Build your first Spring Boot AI app using OpenAI
- Deep dive into ChatModel and ChatClient APIs
Section 2: Prompt Engineering & Structured Output
- Use message roles, prompt templates, and stuffing techniques
- Work with advisors to control AI behavior
- Map AI responses to Java Beans, Lists, and Maps
Section 3: Generative AI & LLM Fundamentals
- Learn about tokens, embeddings, and how LLMs generate text
- Understand attention, vocabulary, and model internals
- Explore static vs positional embeddings and context windows
Section 4: AI Memory with ChatHistory
- Implement stateless-to-stateful conversations
- Use MemoryAdvisors and Conversation IDs for per-user memory
- Persist chat memory using JDBC and configure maxMessages
Section 5: RAG – Retrieval-Augmented Generation
- Set up a vector store (Qdrant) using Docker
- Store and query document embeddings in Spring Boot
- Use RetrievalAugmentationAdvisor to feed documents to AI
Section 6: Tool Calling – Let AI Take Action
- Enable tool invocation via LLMs
- Build tools for real-time actions like querying time or database
- Customize tool errors and return responses to users
Section 7: Model Context Protocol (MCP)
- Learn MCP architecture and communication patterns
- Build MCP Clients and Servers using Spring AI
- Integrate with GitHub’s MCP Server and explore STDIO transport
Section 8: Testing & Validating AI Outputs
- Use RelevancyEvaluator and FactCheckingEvaluator
- Test AI responses for correctness in dev and production
- Add runtime safety checks with Spring Retry
Section 9: Observability – Monitoring AI Operations
- Enable Spring Boot Actuator metrics for AI
- Set up Prometheus & Grafana dashboards
- Trace AI behavior with OpenTelemetry and Jaeger
Section 10: Speech & Image Generation
- Convert voice to text with AI-powered transcription
- Generate natural speech from text prompts
- Turn prompts into images using the ImageModel
Who this course is for:
- Java and Spring Boot developers eager to integrate AI into real-world applications
- Backend developers curious about LLMs, prompt engineering, and AI-powered workflows
- Full Stack developers interested in adding AI capabilities to their microservices or APIs
- Architects exploring Retrieval-Augmented Generation (RAG) and Tool Calling in Spring ecosystems
- Professionals aiming to bring natural language interfaces to enterprise applications
- Devs building chatbots, voice assistants, or image generation tools using Spring AI
- Students and enthusiasts who want a practical, hands-on approach to Generative AI with Java
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 1075 кб/с
Аудио: aac lc, 48.0 кгц, 128 кб/с, 2 аудио
Изменения/Changes
The 2025/8 version has increased the number of lessons by 51 and the duration increased by 7 hours 4 minutes compared to 2025/7.
MediaInfo
General
Complete name : D:\2_1\Udemy - From Java Dev to AI Engineer Spring AI Fast Track (8.2025)\2 - Spring AI Essentials - Prompts, Advisors, and Structured Responses\10 -Understanding ChatOptions in Spring AI.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 89.1 MiB
Duration : 10 min 16 s
Overall bit rate : 1 212 kb/s
Frame rate : 30.000 FPS
Writing application : Lavf59.27.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 10 min 16 s
Bit rate : 1 075 kb/s
Nominal bit rate : 3 000 kb/s
Maximum bit rate : 3 000 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.039
Stream size : 79.1 MiB (89%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=3000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=3000 / vbv_bufsize=6000 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Color range : Limited
Color primaries : BT.709
Transfer characteristics : BT.709
Matrix coefficients : BT.709
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC
Format/Info : Advanced Audio Codec Low Complexity
Codec ID : mp4a-40-2
Duration : 10 min 16 s
Source duration : 10 min 16 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 48.0 kHz
Frame rate : 46.875 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 9.41 MiB (11%)
Source stream size : 9.41 MiB (11%)
Default : Yes
Alternate group : 1