[Udemy, Diogo Alves de Resende] Data Mining for Business Analytics & Data Analysis in Python [3/2025, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 7 месяцев

Сообщений: 2002

LearnJavaScript Beggom · 29-Июл-25 18:48 (2 месяца 29 дней назад)

Data Mining for Business Analytics & Data Analysis in Python
Год выпуска: 3/2025
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/data-mining-python/
Автор: Diogo Alves de Resende
Продолжительность: 9h 0m 9s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
What you'll learn
  1. Identify the value of data mining for quickly analyzing and interpreting data.
  2. Apply data mining algorithms using Python programming language for Business Analytics.
  3. Explain the principles behind various data mining algorithms, including supervised and unsupervised machine learning, and explainable AI
  4. Explain the results of data mining models using explainable artificial intelligence models: LIME and SHAP.
  5. Practice applying data mining techniques through hands-on exercises and case studies.
  6. Implement cluster analysis, dimension reduction, and association rule learning using Python.
  7. Perform survival analysis, Cox proportional hazard regression, and CHAID using Python.
  8. Use random forest and feature selection to improve the accuracy of data mining models.
  9. Develop a portfolio of data mining projects for Business Data Analytics and Intelligence.
  10. Use data mining techniques to inform business decisions and strategies.
Requirements
  1. Statistics - Linear and Logistic Regression
  2. Basic Python
Description
Are you looking to learn how to do Data Mining like a pro? Do you want to find actionable business insights using data science and analytics and explainable artificial intelligence? You have come to the right place.
I will show you the most impactful Data Mining algorithms using Python that I have witnessed in my professional career to derive meaningful insights and interpret data.
In the age of endless spreadsheets, it is easy to feel overwhelmed with so much data. This is where Data Mining techniques come in. To swiftly analyze, find patterns, and deliver an outcome to you. For me, the Data Mining value added is that you stop the number crunching and pivot table creation, leaving time to come with actionable plans based on the insights.
Now, why should you enroll in the course? Let me give you four reasons.
The first is that you will learn the models' intuition without focusing too much on the math. It is crucial that you know why a model makes sense and the underlying assumptions behind it. I will explain to you each model using words, graphs, and metaphors, leaving math and the Greek alphabet to the bare minimum.
The second reason is the thorough course structure of the most impactful Data Mining techniques for Data Science and Business Analytics. Based on my experience, the course curriculum has the algorithms I believe to be most impactful, up-to-date, and sought after. Here is the list of the algorithms we will learn:
Supervised Machine Learning
  1. Survival Analysis
  2. Cox Proportional Hazard Regression
  3. CHAID
Unsupervised Machine Learning
  1. Cluster Analysis - Gaussian Mixture Model
  2. Dimension Reduction – PCA and Manifold Learning
  3. Association Rule Learning
· Explainable Artificial Intelligence
  1. Random Forest and Feature Seletion and Importance
  2. LIME
  3. XGBoost and SHAP
The third reason is that we code Python together, line by line. Programming is challenging, especially for beginners. I will guide you through every Python code snippet. I will also explain all parameters and functions that you need to use, step by step. In the end, you will have code templates ready to use in your problems.
The final reason is that you practice, practice, practice. At the end of each section, there is a challenge. The goal is that you apply immediately what you have learned. I give you a dataset and a list of actions you need to take to solve it. I think it is the best way to really cement all the techniques in you. Hence, there will be 2 case studies per technique.
I hope to have spiked your interest, and I am looking forward to seeing you inside!
Who this course is for:
  1. Professionals looking to learn Data Mining algorithms
  2. Data Analysts starting to learn Data Mining techniques
  3. Business Analysts looking to learn algorithms on how to uncover business insights
  4. Any Python programmer who would like to learn Data Mining tools
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 306 кб/с
Аудио: aac lc sbr, 44.1 кгц, 62.8 кб/с, 2 аудио
Изменения/Changes
The 2025/3 version has not changed in terms of the number of lessons and time compared to 2023/12, but it has been updated after 2 years.
MediaInfo
General
Complete name : D:\2\Udemy - Data Mining for Business Analytics & Data Analysis in Python (3.2025)\08. Random Forest and Feature Selection\5. Python - Transforming Categorical Variables.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 4.62 MiB
Duration : 1 min 43 s
Overall bit rate : 375 kb/s
Frame rate : 30.000 FPS
Recorded date : 2025-04-02 01:36:02.0542242+03:30
Writing application : Lavf61.9.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 1 min 43 s
Bit rate : 306 kb/s
Nominal bit rate : 600 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.011
Stream size : 3.77 MiB (81%)
Writing library : x264 core 148
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=600 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=600 / vbv_bufsize=1200 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC SBR
Format/Info : Advanced Audio Codec Low Complexity with Spectral Band Replication
Commercial name : HE-AAC
Format settings : Explicit
Codec ID : mp4a-40-2
Duration : 1 min 43 s
Bit rate mode : Constant
Bit rate : 62.8 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 44.1 kHz
Frame rate : 21.533 FPS (2048 SPF)
Compression mode : Lossy
Stream size : 792 KiB (17%)
Title : English
Language : English
Default : Yes
Alternate group : 1
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error